Blending of Surfaces of Revolution and Planes by Dupin cyclides

نویسندگان

  • Lionel Garnier
  • Sebti Foufou
  • Marc Neveu
چکیده

This paper focuses on the blending of a plane with surfaces of revolution relying on Dupin cyclides, which are algebraic surfaces of degree 4 discovered by the French mathematician Pierre-Charles Dupin early in the 19th century. A general algorithm is presented for the construction of two kinds of blends: pillar and recipient. This algorithm uses Rational Quadric Bézier Curves (RQBCs) to model the relevant arcs of the principal circles of the cyclides and allows the construction of a new blending primitive: the spindle Dupin cyclide. Our algorithm can also be used for the blending of the plane with particular surfaces of revolution such as the torus, the catenary and the pseudosphere.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

From Dupin Cyclides to Scaled Cyclides

Dupin cyclides are algebraic surfaces introduced for the first time in 1822 by the French mathematician Pierre-Charles Dupin. They have a low algebraic degree and have been proposed as a solution to a variety of geometric modeling problems. The circular curvature line’s property facilitates the construction of the cyclide (or the portion of a cyclide) that blends two circular quadric primitives...

متن کامل

Dupin Cyclide Blends Between Quadric Surfaces for Shape Modeling

We introduce a novel method to define Dupin cyclide blends between quadric primitives. Dupin cyclides are nonspherical algebraic surfaces discovered by French mathematician Pierre-Charles Dupin at the beginning of the 19th century. As a Dupin cyclide can be fully characterized by its principal circles, we have focussed our study on how to determine principal circles tangent to both quadrics bei...

متن کامل

Generalized Dupin Cyclides with Rational Lines of Curvature

Dupin cyclides are algebraic surfaces of order three and four whose lines of curvature are circles. These surfaces have a variety of interesting properties and are aesthetic from a geometric and algebraic viewpoint. Besides their special property with respect to lines of curvature they appear as envelopes of one-parameter families of spheres in a twofold way. In the present article we study two...

متن کامل

Gluing Dupin cyclides along circles, finding a cyclide given three contact conditions

Dupin cyclides form a 9-dimensional set of surfaces which are, from the viewpoint of differential geometry, the simplest after planes and spheres. We prove here that, given three oriented contact conditions, there is in general no Dupin cyclide satisfying them, but if the contact conditions belongs to a codimension one subset, then there is a one-parameter family of solutions, which are all tan...

متن کامل

Do Blending and O setting Commute for Dupin Cyclides?

A common method for constructing blending Dupin cyclides for two cones having a common inscribed sphere of radius r > 0 involves three steps: (1) computing the (?r)-oosets of the cones so that they share a common vertex, (2) constructing a blending cyclide for the ooset cones, and (3) computing the r-ooset of the cyclide. Unfortunately , this process does not always work properly. Worse, for so...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004